electronic spectrum (DME) shows maxima at 380 (ca. $\log \epsilon 4.12$), 486 (ca. 3.66), and 625 nm (ca.3.11).

Addition of a solution of 2 to water gave an 88%, yield of 1,2-dihydro-3,4:5,6:9,10-tribenzobicyclo[6.2.0]decapentaene (3a), as colorless crystals (mp 150-. 153°). The spectral properties [mass, $m / e 280$, base peak; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \tau 2.6-3.3(\mathrm{~m}, 11.9 \mathrm{H}) 3.58(\mathrm{~d}, 0.95 \mathrm{H})$, $5.82(\mathrm{~d}, 0.95 \mathrm{H}), 7.4(\mathrm{~m}, 2.1 \mathrm{H})$; uv $264(\log \epsilon 4.12), 294.5$ (4.00), 301 nm (3.99)] were in accord with the assigned structure 3a. Treatment of 2 with deuterium oxids: gave a 93% yield of the corresponding dideuterio compound 3b, in which the mass ($\mathrm{m} / \mathrm{e} 282$, base peak) and $\mathrm{nmc}\left[\left(\mathrm{CCl}_{4}\right) \tau 2.7-3.3(\mathrm{~m}, 12.2 \mathrm{H}) ; 3.57(\mathrm{~s}, 0.9 \mathrm{H}), 7.16\right.$ (bs, 0.9 H)] spectra confirmed the incorporation of two atoms of deuterium. Hydrogenation ($\mathrm{Pd}-\mathrm{C}, \mathrm{EtOAc}$) of 3a gave the known tetrahydro derivative 4a. ${ }^{1.8}$

The nmr spectrum of 2 shows the same type of patterr. as that of the sym-dibenzocyclooctatetraenyl dianior (5). ${ }^{4}$ However, the proton chemical shifts of 2 are at, higher field than the analogous protons of 5 , and, in par. ticular, the singlet due to the proton H^{E} is now at higher field than the phenyl protons $\mathrm{H}^{\mathrm{B}}, \mathrm{H}^{\mathrm{C}}$. This displace.ment of the proton chemical shifts to higher field is due: to the induced paramagnetic ring current of the four. membered ring. ${ }^{9,10}$

Interrupting the reaction by removing the solution of ${ }^{\circ}$ 1 from the potassium surface allows the course of the: reduction to be followed. The sequence of events which occurs at 35° to the nnır spectrum of the solution is shown in Figure 1. ${ }^{12}$ After initial contact with the: potassium, the spectrum of 1 broadens and completely disappears, and a new spectrum (b) which is not that of 2 , develops. This spectrum slowly increases in intensity on additional contact with potassium until it reaches a maximum resolution (c). On further contact the signa] diminishes in intensity and disappears (d), and the fina] sigual due to 2 appears (e). ${ }^{13}$ This behavior is com. pletely different from that observed in the reduction of cyclooctatetraene ${ }^{2}$ and sym-dibenzocyclooctatetraene, ${ }^{4}$ and is most readily explained by assuming that the initial reduction occurs to give a nonplanar anion radical 6 , which undergoes a rapid electron-exchange reaction with the hydrocarbon 1. Disproportionation or reduction of 6 then gives the nonplanar dianion 7 , the spectrum of which is now observed (b, c). The high-field singlet ($\tau 5.76,0.8 \mathrm{H}$) in the spectrum of 7 is attributed to the proton on the reduced double bond. Finally ring flattening occurs to give 2 , which is assumed to undergo rapid electron exclange with the planar anion

(8) Hydrogenation of $3 b$ gave $4 b$.

(9) H. P. Figeys, Chem. Commun., 495 (1967).
(10) Taking the value of the paramagnetic ring current of the cyclobutadienyl ring to liave the same value, but opposite sign to the diamagnetic ring current of benzene, ${ }^{9}$ then a correction for the protor chemical shifts for the ring currents of directly adjacent rings was mads using a modification ${ }^{4}$ of the method of Shaefer and Schneider. ${ }^{11}$ Cal. culations of the charge densities of the carbon atoms bonded to the pro. tons using this method overestimated the electronic charge (sum >2) If the value for the paramagnetic ring current is increased threefold, then the following values for the excess charge densities are obtained. $C^{A} 0.09, C^{\mathcal{B}} 0.18, C^{C} 0.15, C^{D} 0.11, C^{E} 0.19, C^{F} 0.10, C^{G} 0.14$. This i:i a minimal estimate for the paramagnetic effect, since some charge i:i certainly localized on the carbons bearing no protons.
(11) T. Schaefer and W. G. Schneider, Caл.J. Chem., 41, 966 (1963).
(12) (Preliminary studies (with Dr, B. P. Roberts) have also showr. that changes occur to the esr spectrum during the course of the reaction.
(13) The signals due to the protonated solveut remain relativels sharp throughout the experiment. Hydrolysis of the solution when the spectrum was at stage c gave a 43% yield of 3 a.

8
radical 8, since 2 does not appear until the spectrum of 7 has disappeared. ${ }^{14}$

This is the first observation of the formation of a nonplanar, nonaromatic dianion in the reduction of a cyclooctatetraenyl system. Whereas in the previous systems studied ${ }^{3-5}$ the addition of the first electron was the ratedetermining step, ${ }^{4,15,16}$ the reduction of 1 appears to occur by two discrete one-electron additions in the nonplanar conformation. The changed course of reduction in this system we attribute to the increased barrier to ring flattening arising from the antiaromaticity of the cyclobutadienyl ring.
(14) When the experiment is carried out at -40°, the spectrum of a further intermediate, not 7, is observed, together with the spectrum of 2. When the experiment is carried out at -70°, the spectrum of the intermediate 7 is not well developed, and the signals of 2 are the first to be well resolved. However, if, after the spectrum of 2 has partially developed, the sample is allowed to warm to room temperature without further contact with the potassium, then a reexamination of the spectrum at -70° shows the spectrum of 7 appearing coincidently with that of 2.
(15) T. J. Katz, W. Reinmuth, and D. E. Smith, J. Amer. Chem. Soc., 84, 802 (1962).
(16) R. D. Allendoerfer and P. H. Rieger, ibid., 87, 2336 (1965).
(17) SRC Predoctoral Fellow, 1967 to present.
(18) Recipient of a fellowship of the Studienstiftung des deutschen Volkes (German National Fellowship Foundation), 1968-1969.
C. Stuart Baxter, ${ }^{17}$ P. J. Garratt, K. Peter C. Vollhardt ${ }^{18}$ Chemistry Department, University College

London W.C.1, England
Received September 17, 1969

Driven Equilibrium Fourier Transform Spectroscopy. A New Method for Nuclear Magnetic Resonance Signal Enhancement ${ }^{1}$

Sir:

Fourier transform spectroscopy has attracted considerable attention as a means of attaining very significant improvements in the signal:noise ratio of ligh resolution nuclear magnetic resonance (nmr) spectra. ${ }^{2}$ The technique consists of the application to the sample of a short, intense pulse of radiofrequency energy and the measurement as a function of time of the resulting free induction signal from the nuclear spins in the
(1) A preliminary report of this work was given at the 5th Western Regional Meeting of the Anerican Chemical Society, Anaheim, Calif., Oct 7, 1969.
(2) R. R. Ernst and W. A. Anderson, Rev. Sci. Instrum., 37, 93 (1966).
sample. Fourier transformation of the free induction signal gives the ordinary high resolution spectrum. ${ }^{2,3}$ The advantage of obtaining the spectrum by this indirect procedure is that the free induction signal is obtained rapidly, so that in a given length of time it is possible to apply the pulse repetitively and add the free induction signals coherently in a digital computer or time-averaging device. As a result, a given signal: noise level may be achieved in a much shorter time than with conventional time-averaging procedures. The theoretical saving in time is given approximately by Δ / r, where Δ is the total range of chemical shifts that must be covered and r is the widtll of a typical line. ${ }^{2}$ For protons at 60 MHz this theoretical ratio is 500 . In practice, a time saving of a factor of at least 100 (or equivalently an improvement in signal:noise of 10) has been demonstrated. ${ }^{2}$

The Fourier transform method should be even more valuable for nuclei other than hydrogen, where Δ is large and lines are often sharp. For example, for ${ }^{13} \mathrm{C}$ at 15 MHz , with $1-\mathrm{Hz}$ line width, $\Delta / r>3000$, and at 55 $\mathrm{MHz} \Delta / r \sim 12,000$. However, application of the Fourier transform technique to nuclei, such as ${ }^{13} \mathrm{C}$, with relatively long spin-lattice relaxation times $\left(T_{1}\right)$ has been hampered by the fact that the time interval between successive pulses must in general be long relative to T_{1} to permit the nuclear spin system to return to equilibrium. We demonstrate here a new method by which the equilibrium magnetization of nuclei with long T_{1} may be restored rapidly and full advantage taken of the Fourier transform technique. We call the procedure the "driven equilibrium Fourier transform" (DEFT) method.

Consider, with the aid of Figure 1, the behavior of the macroscopic magnetization \mathbf{M} in a standard Fourier transform pulse experiment and in a DEFT experinient. Initially \mathbf{M} lies along the z axis (the direction of applied field H_{0}). Application of a 90° pulse along the x axis in the coordinate frame rotating at the Larmor frequency causes \mathbf{M} to tip into the $x y$ plane and to lie along the y axis. The signal induced in the coil along the laboratory fixed y axis, slown also in Figure 1, decays both as a result of spin-spin relaxation in a tine T_{2} and as a result of magnetic field inhomogeneity, ΔH_{0}, in a time $T_{2}^{*} \approx \pi / \gamma \Delta H_{0} . \quad T_{2}^{*}$ is usually less than 2 sec , and for most liquid samples governs the decay rate of the signal. Thus spectral information can be accumulated after each 90° pulse for a period of ~ 2 sec at most. For nuclei in most small molecules $T_{1} \approx$ T_{2}, and in those cases where T_{1} is not much longer than $T_{2}{ }^{*}$, magnetization along the z axis is reestablished spontaneously by natural relaxation processes concurrently with the $x y$ dephasing, and the pulse may be repeated. However, if $T_{1} \approx T_{2} \gg T_{2}^{*}$, repetition of the pulse after a time $T_{2}{ }^{*}$ results in a free induction signal that is severely attenuated.

Suppose that at a time τ immediately after decay of the initial free induction, a 180° pulse is applied. As Hahn ${ }^{4}$ first showed, the dephasing due to field inhonogeneity is largely reversible, and at time 2τ the resultant refocussing causes an "echo"-two free induction signals back to back. We now propose that
(3) A. Abragam, "The Principles of Nuclear Magnetism," Clarendon Press, Oxford, 1961.
(4) E. L. Hahn, Phys, Rev., 80, 580 (1950).

Figure 1. Response to pulse sequences for ${ }^{13} \mathrm{C}$ in 60% enriched $\mathrm{CH}_{3}{ }^{13} \mathrm{COOH}$ (neat liquid). Upper trace shows signals obtained for a normal Fourier transform experiment in which 90° pulses are applied at 2 -sec intervals. Responses to the 1 si , 211d, and $20 \mathrm{th}_{\mathrm{h}}$ pulses are shown. Lower trace shows signals obtained in a DEFT experiment, with an indication of the be ravior of the magnetization vector. Each sequence, again spaced at 2 -sec intervals, begins with a 90° pulse followed after 0.2 sec by a 180° (refocussing) pulse. At the peak of the echo an additional 90° pulse restores the magnetization to the z axis.
precisely at the peak of echo, as the nuclei are back in phase, a second 90° pulse be applied. \mathbf{M} is then restored to the z axis. Its magnitude is nearly equal to the initial magnetization if T_{2} is long, since little irreversible dephasing has occurred. Thus the DEFT nuethod provides an almost connplete reestablishment of the equilibrium magnetization in a time much less than T_{1} and permits rapid initiation of a new pulse sequence.

Figure 1 shows a test of the DE'FT metlod for ${ }^{13} \mathrm{C}$ in 60% enriched $\mathrm{CH}_{3}{ }^{13} \mathrm{COOH}$, where $T_{1} \approx 50 \mathrm{sec}$. It is apparent that fast repetition of 90° pulses, as in the usual Fourier transform procedure, results in appreciable attenuation of the signal following the second and subsequent pulses. The DEFT method, on the other hand, gives almost undiminished signals even witli fast repetition rates for the pulse sequence. The exact enhancement factor for DEFT relative to ordinary Fourier transform nmr depends upon T_{1}, T_{2}, and the effect of diffusion in a magnetic field gradient. Further details of the method will be published.

DEFT nmr promises to be a powerful technique in enliancing signals for many nuclei of spin $1 / 2$ which have long T_{1} and T_{2}, low sensitivity, and in some cases occur at low natural abuidance. In addition to ${ }^{13} \mathrm{C}$, which has been studied here, other suitable nuclei include ${ }^{15} \mathrm{~N},{ }^{57} \mathrm{Fe}$ in diamagnetic conıpounds, ${ }^{31} \mathrm{P}$, and ${ }^{183} \mathrm{~W}$.

Edwin D. Becker, James A. Ferretti National Institutes of Health Biethesda, Mary/and 20014

Thomas C. Farrar
Netional Bureau of Standards Gaithersburg, Maryland 20234

Received November 13, 1969

Protonated 1,6-Methanocyclodecapentaene, a Potentially Antihomoaromatic Species

Sir:
There has been much interest recently in the protonation of the $4 n(n=2)$ polyene, cyclooctatetraene, to yield the homoaromatic $4 m+2(m=1)$ species, monohomotropylium ion. ${ }^{1}$ We now report the protonation of a $4 n$
(1) For leading references, see S. Winstein in "Aromaticity," Special Publication No. 21, The Chemical Society, London, 1967, p 5; see also, S. Winstein, Quart. Rev. (London), 23, 141 (1969).

